Revision Notes to Reviewer’s Comments

We have completed a minor revision of the earlier version of the manuscript by taking into
consideration of the response of the reviewer-2. We hope this revised manuscript addresses all the
reviewer’s comments.

Reviewer’s comments and suggestions greatly improved the structure, content, and the quality
of this manuscript. We thank the reviewers for their valuable time spend in careful reading and
constructive comments and suggestions. Their critiques gave us an opportunity to approach
this research problem from various angles and expanded our understanding about the Northwest
Pacific Ocean circulation.

The following revision notes explain details of what we have done to address specific comments
from the each of the reviewers. The reviewer’s comments are in red text in italics. Authors

response is in black text. Changes in the manuscript is in blue text in italics.

Reply to Comments of Reviewer # 2

1 Specific comments

Caption to Figure 1, last sentence: change “assimilation region” to “region where oceanic
observations where assimilated”.

Thank you, we revised the Figure 1 caption as:

“Model domain and the major large-scale circulation features are shown in this figure.
The shading marks the mean SSH in m, and thin green contours marks the SSH stan-
dard deviation at contour interval of 2 cm, computed from AVISO daily gridded SSH
analysis for the period 1993 to 2018. The thick green contour marks the SSH standard devia-
tion of 12 cm. The black box marks the region where oceanic observations were assimilated.”.

Line 127: The grid-scale relaxation times corresponding to the diffusion coefficients when
scaled by the model grid resolution: sounds tautological: “grid-scale... scaled by the model
grid resolution”. It would be better to rephrase these sentences, e.q., The corresponding
relazation times for the grid-scale features are 38 days for harmonic diffusion..., while for
the features with the typical scale of the first baroclinic Rossby radius (60km, wavelengths
250km), the respective relazation times are 1.1 and 3.9 years respectively.

Thank you, we revised this sentence as:

The corresponding relaxation times for the grid-scale features are 38 days for harmonic
diffusion and 12 days for bi-harmonic diffusion, while for the features with the typical scale



of the first baroclinic Rossby radius (60 km), the respective relaxation times are 1.1 and 4.1
years respectively..

Line 191: *“i.e., uncorrelated in space and time” does not imply that the matrices are
diagonal, because different controls could be correlated between each other in coinciding
space-time locations. Remove this comment.

Thank you, we revised this sentence as follows:

The formulation of J assumes that the error covariance matrices Q(t) and R(t) are
diagonal, i.e., uncorrelated..

Lines 200-229. This new piece of text requires more adjustments in terminology. I think the
authors should try to switch from unclear wording (such as growth of nonlinear instabilities,
incorrect? model state, non-smooth? cost function, linearized? adjoint, etc.) to simple
mathematical concepts of linear algebra understandable to a general reader. The point is
that the adjoint [of the tangent linear] model used to compute “sensitivities” is intrinsically
unstable in non-linear regimes. Since this instability predominantly occurs on the grid
scale (i.e., unstable modes are dominated by spatial variations on grid scales), the resulting
gradient (“sensitivity map”) could be severely contaminated by (biased to) these instable
modes (eigenvectors) of the adjoint model if the integration time is long compared to the
e-folding times of the fastest growing modes.

In saying “we are not making the modes stable and reducing their eigenvalues, but instead
altering them to become smoother lower modes”, the authors appear to have certain misun-
derstanding of the diffusive stabilization technique they use: if the eigenvalues of the unstable
modes (eigenvectors) were not reduced, the magnitude of the “smoother lower(?) modes”
would be as large as the magnitude of the fastest growing eigenvectors of the “unfiltered”
adjoint propagator, i.e. of the adjoint model integration without inflated diffusion. I also
strongly recommend discussing the choice of the diffusion magnitude. For example, what
was the motivation of electing longer window at the expense of a larger diffusion (e.g., in
the light of the existing theoretical estimates). Again, I recommend presenting the related
material (including Appendiz B) in the light of stabilizing the adjoint model via inflated dif-
fuston. In the present form the presentation seems a bit clumsy and hardly understandable to
the majority of the readers (see also my request to modify/update Appendiz B, lines 774-783).

We revised the paragraph as follows:

One of the known challenges of using adjoint based JDVAR assimilation systems is the
growth of nonlinear instabilities with integration time. Two approaches are normally sought
to deal with this problem: 1) increasing diffusivity and viscosity coefficients in the adjoint of
the background model [Hoteit et al.(2005), Kohl et al.(2007)], and 2) decreasing the length
of the assimilation window. In this study, we chose an assimilation window of two months,
which s the longest window that produced a skillful optimized state estimate using increased



diffusivity and wviscosity coefficients in the adjoint model. Our hypothesis is that the adjoint
of tangent linear model that compute the gradients or “sensitivities” become unstable in
non-linear regimes that are most prominent at small-scales. This results in corruption of
the sensitivities which grows with integration time and leads to less useful gradients that
can slow or stop the iterative optimization over long assimilation windows. By increasing
the diffusivity and viscosity in the adjoint of background model, we remove these small-scale
features in the sensitivities that will allow us to use longer assimilation windows in our
eddy-permitting model.

In addition to increased diffusivity and viscosity, the KPP mizing parameterization s
disabled in the adjoint model simulation to minimize its contribution to the monlinearity
of the adjoint in order to permit longer assimilation windows. The mixing parameters
computed by KPP in the forward run were retained in the linearized adjoint, so it is only
the effects of changes in the parameters due to changes in the model state that were not
included. This limits the fidelity of the adjoint in the surface layer and leads to higher
model representational error. Relative to the forward model integration, the horizontal
second-order viscosity and diffusivity coefficients in the adjoint simulation were increased
by a factor of 50 (50 x 10> m? s™') and the fourth-order coefficients were increased by a
factor of 5 (5 x 10 m* s71). The vertical second-order viscosity and diffusivity coefficients
were also increased by a factor of 50 (50 x 2 x 107> m? s7').  These coefficients were
selected to allow successful model fits to observations over all of the two-month assimilation
windows. The sensitivity of the adjoint model simulation to changes in the viscosity and dif-
fusivity coefficients is examined in Appendix B for the special case of a linear cost function. .

Table 1: adding the right column is informative. I would also recommend to add “x 60”
after the numbers in the right column (e.g., change 74,091 to 74,091 x 60 if there are 60
daily control fields) for better clarity. Same with open boundary controls.

The values shown in the right most column marks the number of control points for each
day of the assimilation window. We modified the Table including this detail.

Line 388-390: “non-linearities in the solution, which we smooth from our gradients, mean
that control is lost and the cost descent is less efficient....” To clarify presentation, I would
change this to “the small-scale structure of the optimal solution is not well reproduced, as it
1s removed from the gradients by the inflated diffusion in the adjoint model, causing certain
loss of the control by the initial conditions and less efficient descent ...”

Thank you for your comment. We revised the sentence as below:

Finally, the small-scale structure of the optimal solution is not well reproduced, as it is
removed from the gradients by the increased diffusion in the adjoint model, causing certain
loss of the control by the initial conditions and results in less efficient cost descent for longer
assimilation periods. .



Lines 774-783: This paragraph looks somewhat naive. Figenvectors of AT are complex while
those of D are real. As a consequence, AT and D would never commute, so “leaving the
commutation of the operators as a research question” is a bit senseless. Instead, I would
recommend a quick alternative research: assessment of a few largest eigenvalues of AT
using, say, a standard ARPACK routine for an implicit matriz (whose action on vector
is defined via a separate routine — adjoint model in your case). You can do that for, say,
5-day (or longer, if possible) integrations of the adjoint model with original and inflated
diffusivities. As an extra option, you could use an ARPACK routine that computes the
respective eigenvectors and see changes in their spatial structure caused by inflated diffusion.
Results of these calculations would be instructive and interesting to potential readers.

Thank you for your comment. We revised this paragraph clarifying about the commuta-
tion as follows:

Increasing the wviscosity and diffusivity in the adjoint model can be expressed as augmenting
the adjoint propagator at each timestep, AT, with a viscous operator: AT — K, D, where K,
is the additional horizontal viscosity (in this case a space- and time-invariant scalar) and D
is the horizontal viscous operator. Since the two operators: AT and D do not commute in
general, the eigenvectors of the sum will not be the same as for the adjoint along, so we refer
to the increased viscosity as a smoothing, not a change in the eigenvalues. The enhanced
viscosity will certainly reduce the growth of senmsitivities, but may also change the modes
of evolution, not merely their eigenvalues depending on the commutation of the two operators.
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